

# Modelos no lineales en curvas de crecimiento de conejos

Pérez-Ramírez José A.<sup>1</sup>; González-Cerón Fernando<sup>1</sup>; Zárate-Contreras Diego<sup>2</sup>; Herrera-Haro José G.<sup>2</sup>; Sosa-Montes Eliseo<sup>1</sup>; Mendoza-Pedroza Sergio I.<sup>2</sup>; Pro-Martínez Arturo<sup>2</sup>

- Universidad Autónoma Chapingo, Departamento de Zootecnia, Carretera México-Texcoco km 38.5, Texcoco, Estado de México, México. C.P. 56230.
- <sup>2</sup> Programa de Ganadería, Colegio de Postgraduados Campus Montecillo, Carretera México-Texcoco km 36.5, Montecillo, Texcoco, Estado de México, México. C.P. 56264.
- \* Autor de correspondencia: aproma@colpos.mx

## **Problema**

El progreso de la cunicultura mexicana ha sido limitado por su bajo consumo de carne, insuficientes apoyos gubernamentales, falta de canales de comercialización y desconocimiento del manejo de la especie; a pesar de ello la actividad cunícola ha ido mejorando en las últimas décadas, desarrollando avances tecnológicos en las áreas de nutrición e instalaciones, sin embargo, se cuenta con pocos avances en la mejora genética de la especie, constituyéndose en un factor limitante en los sistemas de producción a pequeña escala al desconocer las características que permitan una mejor productividad y, consecuentemente, una mayor rentabilidad. Es importante, evaluar estas características para realizar mejores programas de cría y alimentación que expresen el mayor potencial productivo de sus reproductores, buscando que la cunicultura sea una actividad rentable que pueda complementar la demanda de carne, cubierta actualmente por la avicultura o porcicultura principalmente.

#### Solución

Para evaluar el desempeño productivo de una población cunícola, se requiere de información periódica sobre el crecimiento de los animales (peso vivo) para desarrollar modelos de fácil interpretación gráfica como las curvas de crecimiento. Por lo tanto, el empleo de ecuaciones matemáticas no lineales cobra importancia; ya que permiten el estudio e interpretación de ciertos procesos biológicos, como la descripción del cambio del peso de los animales en función de un tiempo determinado; generando ciertos parámetros con interpretación biológica, que permitan describir el comportamiento productivo. El ajuste

Cómo citar: Pérez Ramírez, J. Ángel, González Cerón, F., Zárate Contreras, D., Herrera Haro, J. G., Sosa Montes, E., Mendoza Pedroza, S. I., & Pro Martínez, A. Modelos no lineales en curvas de crecimiento de conejos. Agro-Divulgación, 5(2). https://doi. org/10.54767/ad.v5i2.474

Editores académicos: Dra. Ma. de Lourdes C. Arévalo Galarza y Dr. Jorge Cadena Iñiguez.

Publicado en línea: Octubre, 2025.

Agro-Divulgación, 5(2). Marzo-Abril. 2025. pp: 79-84.

Esta obra está bajo una licencia de Creative Commons Attribution-Non-Commercial 4.0 International



de modelos matemáticos permite la predicción de tasas de crecimiento, estimar requerimientos nutricionales, evaluar el éxito de la selección y otros aspectos de interés zootécnico. Los modelos más utilizados son los de Gompertz-Laird, de Von Bertanlanffy, Logístico y Richards (Figura 1).

# Modelo Gompertz-Laird

Describiéndose la curva de crecimiento Gompertz-Laird mediante el modelo:

$$W_t = W_0 \exp \left[ (L/K) (1 - \exp(-Kt)) \right]$$

En donde  $W_t$  es el peso vivo del conejo a un tiempo determinado t,  $W_0$  se refiere al peso vivo al nacimiento (g), exp es la función exponencial  $\left[\exp(1) = e^1 = 2.71828183\right]$ , L es la tasa especifica de crecimiento inicial, K representa la tasa especifica de crecimiento; Mientras que la edad al máximo crecimiento  $(t_i, d)$  y el peso asintótico  $(W_A, g)$  se estiman a través de las fórmulas:

$$\left[\exp(1) = e^1 = 2.71828183\right]$$

# Modelo Logístico

La curva del modelo Logístico se define a través de la fórmula:

$$W_t = W_A / \left[ 1 + \exp\left(-K\left(t - t_i\right)\right) \right]$$

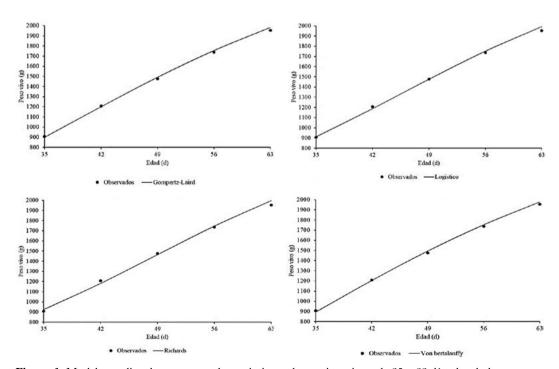



Figura 1. Modelos no lineales en curvas de crecimiento de conejos mixtos de 35 a 63 días de edad.

En donde  $W_t$  es el peso a determinado tiempo t,  $W_A$  es el peso asintótico (g), K es la tasa especifica de crecimiento y  $t_i$  es la edad al punto de inflexión (d).

## **Modelo Richards**

La siguiente ecuación describe la curva de crecimiento del modelo Richards:

$$W_{t} = W_{A} \left[ 1 - (1 - m) \exp \left[ -K \left( t - t_{i} \right) / m^{m/(1 - m)} \right] \right]^{1/(1 - m)}$$

Donde:  $W_t$  es el peso del conejo a un tiempo determinado t,  $W_A$  es el peso asintótico o peso maduro (g), K es la tasa especifica de crecimiento en  $t_i$  respecto a  $W_A$ ,  $t_i$  es la edad de crecimiento máximo (d), y m es un parámetro de forma, cuya propiedad es la relación del peso en  $t_i$  a  $W_A$ .

## Modelo Von Bertalanffy

Definiéndose el modelo de Von Bertalanffy mediante la siguiente ecuación:

$$W_t = W_A \left(1 - B * \exp^{\left(-K * t\right)}\right)^3$$

De la cual  $W_t$  es el peso del conejo en el tiempo t,  $W_A$  es el peso asintótico o peso maduro, K es la tasa especifica de crecimiento  $\left[\left(g\,dia^{-1}\right)g^{-1}=dia^{-1}\right]$  y B es una constante de integración. La edad de crecimiento máximo  $(t_i)$  y el PV en la edad del punto de inflexión  $(W_I)$ , se estiman de la siguiente manera:  $t_i = \ln(3B)/K$  y  $W_I = W_A *8/27$ .

## Parámetros generados por los modelos

La ventaja de estos modelos en comparación con los modelos lineales, está en su sencillez y facilidad de interpretación, describiéndose de la siguiente manera los parámetros obtenidos de las ecuaciones de los modelos no lineales: el peso al nacimiento  $(W_0, g)$  prediciendo el peso al parto de las conejas en una población determinada. La tasa especifica de crecimiento inicial  $(L, d^{-1})$  representa la velocidad con la que el animal se desarrolla durante la primera fase de su crecimiento (fase de crecimiento acelerado); los parámetros W<sub>0</sub> y L son estimados únicamente por el modelo no lineal de Gompertz-Laird. La tasa especifica de crecimiento  $(K, d^{-1})$ , se define como un indicador de la precocidad del animal, utilizándose para evaluar la eficiencia del crecimiento, al determinar la velocidad con la que se alcanza el peso maduro. Cuanto mayor sea el valor de este parámetro, más precoz es el animal, en tanto valores más bajos indican una madurez tardía. La edad de crecimiento máximo  $(t_i, d)$ , se refiere al tiempo al que se espera que el individuo alcance la mayor tasa de crecimiento al acercarse a un punto de inflexión. El peso asintótico ( $W_A$ , g), explicado como el peso que se alcanza a la madurez, es decir, el peso adulto. Mientras que el peso vivo a la edad del punto de inflexión  $(W_I, g)$ , hace referencia al peso que los animales alcanzarán al comenzar su desarrollo maduro; este parámetro únicamente se genera mediante el modelo de Von Bertalanffy.

En su mayoría, las investigaciones que relacionan los modelos no lineales con el crecimiento de conejos, se ajustan a un rango de edades a partir del destete, 30-35 días de edad hasta los 84-91 días, registrando un peso vivo a los 35 días de edad de 635 a 980 g y alcanzando un peso de 2105 a 2750 g al día 84 a 91 de edad (Figura 2).

Algunos valores reportados (Cuadro 1), indican que para poder comparar entre modelos y elegir los de mejor ajuste, basta con obtener 3 parámetros, K,  $t_i$  y  $W_A$ .

## Retribución social

Conocer los parámetros de los modelos no lineales y su significado sirve de base para determinar el desempeño productivo de los animales, así mismo, para su comparación en investigaciones; con base en los resultados se pueden realizar ajustes en la alimentación y producción de una población determinada de conejos. Esta investigación es parte de la LGAC-CP: Innovación Tecnológica y Seguridad Alimentaria en Ganadería del Posgrado en Recursos Genéticos y Productividad en Ganadería.



Figura 2. Crecimiento de conejos Nueva Zelanda de engorda a diferentes edades (35 a 84 días).

Cuadro 1. Parámetros de modelos no lineales en curvas de crecimiento en conejos.

|                                                      |                                                                                            | `                                                                   | ;                                      |                                                                                                                |
|------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------|
|                                                      |                                                                                            |                                                                     | Modelo no lineal                       |                                                                                                                |
| οποι                                                 | Gompertz-Laird                                                                             | Logístico                                                           | Von Bertalanffy                        | Richards                                                                                                       |
| mère¶                                                | $W_t = W_0 \exp\left[\left(\frac{L}{K}\right)\left(1 - \exp\left(-Kt\right)\right)\right]$ | $W_t = \overline{\left[1 + \exp\left(1 - K(t - t_t)\right)\right]}$ | $W_l = W_A (1 - B * \exp^{(-K*_l)})^3$ | $W_{l} = W_{A} \left[ 1 - (1 - m) \exp \left[ \frac{-K(t - t_{i})}{m^{m/(1 - m)}} \right]^{1/(1 - m)} \right]$ |
| Peso al nacimiento $PV(W_0, g)$                      | $22.37^{1}$ - $64.98^{2}$                                                                  | ,                                                                   | -                                      | -                                                                                                              |
| Tasa especifica de crecimiento inicial $(L, d^{-1})$ | $0.091^3$ - $0.198^1$                                                                      |                                                                     |                                        |                                                                                                                |
| Tasa de decaimiento o de maduración $(K, d^{-1})$    | $0.01^3 - 0.16^3$                                                                          | $0.054^{4}0.062^{1}$                                                | $0.023^4$ $-0.13^2$                    | $0.0155^{1}$ - $0.0189^{5}$                                                                                    |
| Edad de crecimiento máximo $(t_i, d)$                | $38.63^{1}$ - $65.03^{2}$                                                                  | $30.88^6 - 45.51^1$                                                 | $34.77^{1}$ - $57.54^{2}$              | 41.3 <sup>5</sup> -48.89 <sup>1</sup>                                                                          |
| Peso asintótico $(W_4, g)$                           | 2867.8 <sup>1</sup> -3671.1 <sup>2</sup>                                                   | 1975.66 <sup>5</sup> -2664.89 <sup>1</sup>                          | $2985.3^{1}$ - $4504.9^{2}$            | $2039.78^5 - 2576.23^1$                                                                                        |
| Parámetro de forma $(m)$                             | ,                                                                                          | •                                                                   | 1                                      | $1.36^{1}$ - $2.83^{5}$                                                                                        |
| Constante de integración $(B)$                       |                                                                                            | ,                                                                   | 1.082 <sup>1</sup>                     |                                                                                                                |
| PV a la edad del punto de inflexión $(W_I, g)$       | ,                                                                                          | ,                                                                   | $884.53^{1}$ - $1596.86^{2}$           | •                                                                                                              |
| ,                                                    | 3000 1                                                                                     | 3. 3. 1. 1. 000.1                                                   | 1 2000                                 |                                                                                                                |

 $^{1}\text{Pérez-Ramírez} \textit{ et al., } 2025; ^{2}\text{Wojnarowska} \textit{ et al., } 2022; ^{3}\text{Larzul} \textit{ et al., } 2004; ^{4}\text{Liao} \textit{ et al., } 2021; ^{5}\text{Santos} \textit{ et al., } 2018; ^{6}\text{Obioma} \textit{ et al., } 2020.$ 

Innovación, impactos e indicadores

| Nivel de<br>Innovación | Descripción         | Transferido     | Impacto            |               | Indicador<br>General de | Indicadores   | 6.1.1.             |
|------------------------|---------------------|-----------------|--------------------|---------------|-------------------------|---------------|--------------------|
|                        |                     |                 | Sector             | Ámbito        | Políticas<br>Públicas   | Específicos   | Subindicador       |
| Incremental            | Busca mejorar       | Asociaciones de | Primario:          | Social.       | Ciencia y               | Capacitación. | Formación de       |
|                        | los sistemas        | Productores.    | Agricultura,       |               | Tecnología.             |               | estudiantes.       |
|                        | que ya existen      |                 | Ganadería, Pesca,  | Económico.    |                         | Comercio.     |                    |
|                        | haciéndolos         | Gobierno de los | Explotación        |               | Económico.              |               | Reuniones          |
|                        | mejores, más        | Estados.        | forestal, Minería. | Conocimiento. |                         | Formación     | científicas.       |
|                        | rápidos, más        |                 | Cuaternario:       |               | Educación.              | de recursos   |                    |
|                        | baratos, entre      | Productores     | Servicios          |               |                         | humanos.      | Transferencia de   |
|                        | otros.              | independientes. | basados en el      |               |                         |               | tecnologías.       |
| Procesos               | Implementación      | 1               | conocimiento que   |               |                         | Conferencias. |                    |
|                        | de una nueva        | Comunidades     | prestan industrias |               |                         |               | Difusión de        |
|                        | o significativa     | Agrarias.       | de las Tecnologías |               |                         |               | información.       |
|                        | mejora de un        |                 | de Información     |               |                         |               |                    |
|                        | método de           | Poblaciones en  | y comunicación,    |               |                         |               | Trabajo de tesis.  |
|                        | producción o de     | particular.     | de consultoría     |               |                         |               |                    |
|                        | suministro.         |                 | empresarial, de    |               |                         |               | Aplicación         |
| Innovación frugal      | Hacer más con       | Productores de  | planificación      |               |                         |               | de técnicas y      |
|                        | menos. Idear        | traspatio.      | financiera, de     |               |                         |               | conocimientos      |
|                        | estrategias de bajo |                 | informática y      |               |                         |               | tecnológicos para  |
|                        | costo para sortear  |                 | de investigación   |               |                         |               | el desarrollo soci |
|                        | las complejidades   |                 | científica.        |               |                         |               | y económico.       |
|                        | institucionales     |                 |                    |               |                         |               |                    |
|                        | o limitaciones      |                 | Procesos de        |               |                         |               |                    |
|                        | de recursos,        |                 | Investigación,     |               |                         |               |                    |
|                        | conseguir innovar,  |                 | Desarrollo e       |               |                         |               |                    |
|                        | desarrollar         |                 | Innovación         |               |                         |               |                    |
|                        | y entregar          |                 | (I+D+I).           |               |                         |               |                    |
|                        | productos y         |                 |                    |               |                         |               |                    |
|                        | servicios a los     |                 |                    |               |                         |               |                    |
|                        | usuarios de bajos   |                 |                    |               |                         |               |                    |
|                        | ingresos con poco   |                 |                    |               |                         |               |                    |
|                        | poder adquisitivo.  |                 |                    |               |                         |               |                    |

